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For a number of years MDL products have exposed both 166 bit and 960 bit keysets based on 2D descriptors.
These keysets were originally constructed and optimized for substructure searching. We report on
improvements in the performance of MDL keysets which are reoptimized for use in molecular similarity.
Classification performance for a test data set of 957 compounds was increased from 0.65 for the 166 bit
keyset and 0.67 for the 960 bit keyset to 0.71 for a surprisal S/N pruned keyset containing 208 bits and 0.71
for a genetic algorithm optimized keyset containing 548 bits. We present an overview of the underlying
technology supporting the definition of descriptors and the encoding of these descriptors into keysets. This
technology allows definition of descriptors as combinations of atom properties, bond properties, and atomic
neighborhoods at various topological separations as well as supporting a number of custom descriptors.
These descriptors can then be used to set one or more bits in a keyset. We constructed various keysets and
optimized their performance in clustering bioactive substances. Performance was measured using methodology
developed by Briem and Lessel. “Directed pruning” was carried out by eliminating bits from the keysets on
the basis of random selection, values of the surprisal of the bit, or values of the surprisal S/N ratio of the
bit. The random pruning experiment highlighted the insensitivity of keyset performance for keyset lengths
of more than 1000 bits. Contrary to initial expectations, pruning on the basis of the surprisal values of the
various bits resulted in keysets which underperformed those resulting from random pruning. In contrast,
pruning on the basis of the surprisal S/N ratio was found to yield keysets which performed better than those
resulting from random pruning. We also explored the use of genetic algorithms in the selection of optimal
keysets. Once more the performance was only a weak function of keyset size, and the optimizations failed
to identify a single globally optimal keyset. Instead multiple, equally optimal keysets could be produced
which had relatively low overlap of the descriptors they encoded.

INTRODUCTION features of a query molecule can be used to set keybits; a
) ) search for molecules matching that query could then be
There are a number of tasks in the drug-discovery tqjitated by screening out all molecules in the database
workflow which require grouping andfor separating mol- \hich do not set those same keybits. An optimization strategy
ecules based on some criteria. Clustetingnd diversity ¢ ,ch a task might include the choice of properties to
analysi$“are often implemented using distances or similarity g\cqqe which would be structure differentiating and arrange-
measures based on binary keysets. Databases and librarie§ant of them within the keyset in order of increasing
can be characterized based on statistical distribution f“nc'probability of occurrence within a reference data set.
tions® of bits within keysets, in addition to the more familiar Indeed, this is the genesis of two common MDL keysets:
calculations based on Pfizer “Rule of Fivedistribution 1o ¢ontaining 960 keybits and the other containing a subset
functions?® or atom occurrence courftd.ead identification 166 keyhits Their use in substructure searching has been
using fingerprints based on binary keysets continues to belargely obviated by index-based search technig@ey
examined:*2Finally, the related topics of library desigt® 136 “however, found a variety of uses in the drug-discovery
and optimal compound selectén'’ often use binary /i flow. '
keysets. There continues to be interest in the design of keysets
In this paper we will use the following definitions to refer  which will provide more performance in a drug-discovery
to keyset components. “Descriptor” will be used to refer to orkflow. Recent work includes examination of vitro
a molecular feature. Descriptors can be encoded into binaryaffinity fingerprints2223 in silico (or virtual) affinity
“keybits”. There can be a one-to-one relationship between fingerprints24-26 and feature tre€sas methods of producing
descriptors and keybits, or hashing can be used to create &eysets optimized for similarity searches. Briem and L&sel
many-to-one or many-to-many relationship between descrip- carried out a study comparing various 2D descriptors with
tors and keybits. An ordered collection of keybits constitute several virtual affinity fingerprints. They found that the 2D
a “keyset”. “Keys” is context-sensitive and is used to refer descriptors out-performed the affinity fingerprint methods.
either to keybits or keysets. The existing MDL 2D keyset technology can, in theory,
Historically, molecular keysets have been used for sub- produce in excess of 3 million distinct keybits, which can
structure searchintf:'° For example, a number of topological be combined into innumerable keysets. We wanted to explore
the reoptimization of keysets and determine how much
* Corresponding author phone: (510)895-1313; e-mail: jdurant@mdli.com. performance could be improved by such reoptimization.
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Table 1. Atom-Based Properties Table 2. Single-Atom Atom-Based Properties
n P n A
0 null 0 null
1  atom with at least three neighbors 1 atom with at least three neighbors
2 heteroatom 2 heteroatom
3 atominvolved in one or more multiple bonds, not aromatic 3 atom involved in some multiple bonds, not aromatic
4  atom with at least four neighbors 4 atom with at least four neighbors
5 atom with at least two heteroatom neighbors 5 atom with at least two heteroatom neighbors
6  atom with at least three heteroatom neighbors 6 atom with at least three heteroatom neighbors
7  heteroatom with at least one hydrogen attached 7 heteroatom with at least one hydrogen attached
8  carbon with at least two single bonds and at least two 8 carbon with at least two single bonds and at least two
hydrogens attached hydrogens attached
9  carbon with at least one single bond and at least three 9 carbon atom in a €C double bond
hydrogens attached 10 atom has at least two single bonds
10  halogen 11 atom has at least three single bonds
11 atom has at least three single bonds 12 atom is in at least two different six-membered rings
12  atomis in at least two different six-membered rings 13 not used
13  notused 14 atom has more than two ring bonds
14  atom has more than two ring bonds 15 atom is at a ring/chain boundary

15  atom s at a ring/chain boundary. When a comparisonis done 16  central atom is at an aromatic/nonaromatic boundary
with another atom the path passes through the chain bond. 17 atom with more than one chain bond

16 atom is at an aromatic/nonaromatic boundary. When a 18 atom is in a ring
comparison is done with another atom the path 19 aromatic atom
passes through the aromatic bond. 20  atom is a heteroatom in a ring.
17 atom with more than one chain bond 21 rare properties: atom with five or more neighbors, atom in
18 atom is at a ring/chain boundary. When a comparison is done four or more rings, or atom types other than
with another atom the path passes through the ring bond. H,C,N,O,S,F,ClBrorl
19  atomis at an aromatic/nonaromatic boundary. When a 22 rare properties: atom has a charge, is an isotope, has two or
comparison is done with another atom the more multiple bonds, or has a triple bond.
path passes through the nonaromatic bond. 23 nitrogen
20  atomis a heteroatom in a ring. 24 sulfur
21  rare properties: atom with five or more neighbors, atom in 25 oxygen
four or more rings, or atom types other than 26 atom in a three-membered ring
H,C,N,0,S,F, Cl Brorl _ ) 27  atom in a four-membered ring
22 rare properties: atom has a charge, is an isotope, hastwo or  »g atom in a five-membered ring
more multiple bonds, or has a triple bond. 29 atom in a six-membered ring
23 nitrogen 30  atom has two neighbors, each with three or more neighbors
24 sulfur (including the central atom).
25  oxygen 31 atom has two hydrocarbon (@Hheighbors

26 not used
27 not used
28  notused of an azulene. “Arom5” bonds are those in a five-membered

29  notused : : « "
30 atom has two neighbors, each with three or more neighbors ring with two double bonds and a “heteroatom” or & the

(including the central atom). apex of the ring.
31  atom has two hydrocarbon (@Hheighbors Descriptor Encoding. The largest block of descriptors
makes use of algorithmically calculated atom-based proper-
COMPUTATIONAL METHOD ties. Specifically we perceive 26 properties of type P, as listed

in Table 1, and 30 properties of type A (most of which are
Structure of MDL Keys. The underlying technology used the same as type P properties), as listed in Table 2.
in the MDL 2D keysets is based on a general molecule Additionally we perceive 32 one-atom environments, as listed
perception algorithm, which perceives a number of atom, in Table 3.
bond, and custom properties. The mapping of these properties One class of possible atom-based descriptors result from
into descriptors and then into the keybits and ultimately the presence of one or two properties of type A located on
keysets is under software control. a single atom. For this class ® 0; n2 and n3 encode the
Specifically, a keybit is defined by nine numbers, which appropriate values of A.
we will denote by n1 through n9. The first four numbers A second class of possible atom-based descriptors result
encode the various properties into descriptors. The remainingfrom the presence of an atom with property P, separated by
five numbers determine which keybits are set by the one to four bonds from a second atom with a propefty P
descriptor. For this class nl encodes the number of bonds between the
General Definitions. MDL has specific definitions fora  atoms, and n2 and n3 encode the appropriate values of P
number of general chemistry terms. “Heteroatom” is used and P.
to refer to any non-C, non-H atom, and is abbreviated “Q”. A third class of possible atom-based descriptors results
“Halogens” consist of F, Cl, Br, and I. “Other” atoms include from the presence of an atom with property A located in the
any atoms other than H, C, N, O, Si, P, S, F, Cl, Br, and | center of a particular atom environment. In this case=nl
and is abbreviated “X”. “Aromatic” refers to bonds which 7, n2 encodes the atom environment, and n3 encodes the
are either “Kekule aromatic” or “arom5”. “Kekule aromatic” property A.
bonds are those in a six-membered ring system with Another block of descriptors encodes one of 264 atom-
alternating double and single bonds or the perimeter bondsbond-atom combinations. Atoms include C, N, O, Si, P, S,
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Table 3. Atomic Environments reversing n2 and n3. The algorithm used will only set keybits
n atom environment n atom environment for n2 less than or equal to n3 in these instances. As a result
0 c(co) 16 Q(CO) we can encode 3234 different descriptors encoding occur-
1 c(cce) 17 Q(Ccce) rence counts of “1 or more”. Since these descriptors can have
2 C(CN) 18 Q(CN) occurrence counts of “1 or more” to “999 or more”, we have
431 g(ﬁﬁ’\‘) 218 Q('SEN) the ability, in theory, to produce in excess of 3 million
5 CENN)C) 21 8((CN)N) distinct descriptors, which can be combined into innumerable
6 C(NNN) 22 Q(NNN) keysets. Our question is then “How does one select an
7 C(CO) 23 Q(CO) optimal set of descriptors for use in drug discovery work-
8 C(CCo) 24 Q(CCO) flows, or, more concretely, for use in molecular similarity
9 C(NO) 25 QINO) calculations?”

10 C(NCO) 26 Q(CNO) e

11 C(NNO) 27 Q(NNO) Success MeasureWe chose to adopt a success measure
12 C(00) 28 Q(00) defined by Briem and Lessé.Their success measure is
13 C(CO0) 29 Q(CO0) calculated by taking the mean fraction of molecular nearest
14 C(NOO) 30 Q(NOO) ; ; i

15 (000) 31 5(000) neighbors which are of the same activity class as the target

active compound, and averaging this quantity over all active
aThe first symbol is the central atom, with atoms bonded to the target compounds. This measure should be directly applicable
central atom listed in parentheses. “Q” is any non-C, non-H atom. If to clustering and diversity applications and should also reflect
only two atoms are in parentheses, there is no implication concerning performance expected in other drug discovery applications.
the other atoms bonded to the central atom. To implement this method Briem and Lessel have defined
. ., , .. . asetofsix categories of molecules selected from the MDDR
F, Cl, Br, |, and “other” (X), with bond types of "single”  j;tahase? These molecules consist of 134 PAF antagonists,
(), “double” (=), “triple” (#), and “ring” (%). These 49 5 4T3 antagonists, 49 TXA2 antagonists, 40 ACE
descriptors have n& 6; n2 and n3 are set as shown in Table jnpipitors, 111 HMG-CoA reductase inhibitors, and 574 other
4. compounds selected at random from MDDR which were not
Yet another block encodes a number of custom and SgrouPprimarily members of the already selected activity classes.

features’® These can be found in Table S. . The first five categories will be referred to as “actives”, the
The first subblock of these descriptors encodes a seriesyangomly chosen molecules as “inactives”. The total number
of properties which are used in the 166 bit MDL keyset. ot molecules in the data set is 957.

The next subblock of 256 descriptors encodes atom types e pext step in calculating the success measure for the

of 1-256. Normally atom types between 1 and 103 €or- ayset under investigation is to collect nearest neighbors for
respond directly with perlod|c table elements. The range 4 "the compounds in the “active” classes. In the original
104-256 allows encoding of custom atom types. paper Euclidean distances between keys were used; we use

A final subblock of descriptors encode a variety of MDL 6 computationally easier Hamming distance, defined as the
Sgroup properties. _ _ number of bits which are different between the two bit sets.

In converting these descriptors to keybits we also need 10 g pinary keys the Euclidean distance is the square root of
set an occurrence count, which is encoded in n4. This allows,o Hamming distance. Use of the Hamming distance results
us to define descriptors for occurrence counts of “1 or more” i, the same nearest neighbors as those found using a
up to 999 or more”. , _ _ Euclidean metric. The fraction of the top 10 nearest-

KeyBit Encoding. The last five numbers in the keybit  aighhors which are in the same activity class as the target
definition are used to control which keybit(s) are set by the jefines the success measure for that target molecule. The
descriptor defined by the first four numbers. N5 is used 10 (15| syccess measure is then the average of the individual
specify the number of keybits which are set, which is in the g;ccess measures for all the active molecules. We have added
range of 1 to 3. N6 is a flag indicating whether (1) or not g, njicit consideration of ties by including all molecules which
(0) the keybit(s) set are also set by other descriptors. Thep,ye gistances equal to the tenth nearest neighbor. This
final three numbers, n7, n8, and n9, identify the keybits, with o 6yes a dependence on the order that the molecules are
“0" used for padding. . _ considered which was present in the original method. It also

Putting it Together. At this point we can consider the a5 the effect of reducing the success measure for the 166
meaning of an example keybit: keybit MDL keyset to 0.65 from the 0.67 reported by Briem

L and Lesset®

Egs.'t'on: nt nz n3 n4 n5 n6 nr ng - n9 Completely random compound selection of molecules will

y: 2 3 5 2 3 1 479 469 763 ) ) W

yield a nonzero fraction of compounds of the same activity

This keybit can be translated to the following: At least two class within the 10 nearest neighbors. Consideration of the
occurrences (n4) of an atom in a multiple, nonaromatic bond average probability of this occurring for the five active
(n2) located two bonds (n1) away from an atom with at least classes yields an average success measure of 0.08 for random
two heteroatom neighbors (n3). The descriptor sets threeselection.
keybits (n5), which can be set by other descriptors (n6). The Use of Hamming distances in this context most probably
keybits set are 479, 469, and 763 {1P). results in a performance degradation relative to results using

A number of properties are incompatible, resulting in the Tanimoto distances. However, calculation of Hamming
fact that fewer descriptors are chemically possible than aredistances can be easily optimized, and the resulting optimized
mathematically allowed. Additionally, a number of descrip- code gave us increased latitude in carrying out GA studies
tors can be encoded two different ways, most frequently by (vide infra).
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Table 4. Atom-Bond-Atom Properties

n2 n3 n2 n3 n2 n3 n2 n3 n2 n3

0 17 c-C 4 8 Br—Br 11 6 P=P 18 4 S#S 25 2 N%N
0 18 C-N 4 9 Br—Si 11 7 P=F 18 5 S#CI 25 3 N%O
0 19 c-0 4 10 Br-I 11 8 P=Br 18 6 SHP 25 4 N%S
0 20 C-S 4 15 Br-X 11 9 P=Si 18 7 S#HF 25 5 N%CI
0 21 C-ClI 4 25 Si-Si 11 10 P=l 18 8 S#Br 25 6 N%P
0 22 C-P 4 26 Si-| 11 15 P=X 18 9 S#Si 25 7 N%F

0 23 C-F 4 31 Si-X 11 23 EF 18 10 S#l 25 8 N%Br
0 24 C-Br 5 10 I—1 11 24 ~=Br 18 15 S#X 25 9 N%Si
0 25 C-Si 5 15 =X 11 25 F=Si 18 21 CI#CI 25 10 N%l

0 26 C-1 7 31 X=X 11 26 =l 18 22 Cl#pP 25 15 N%X
0 31 C-X 8 17 C=C 11 31 =X 18 23 Cl#F 25 19 0%0
1 2 N—N 8 18 C=N 12 8 Br=Br 18 24 Cl#Br 25 20 O%S

1 3 N-O 8 19 CG=0 12 9 BE=Si 18 25 CI#Si 25 21 0O%CI
1 4 N-S 8 20 G=S 12 10 Br=l 18 26 Cl#l 25 22 O%P

1 5 N—-CI 8 21 C=ClI 12 15 Be=X 18 31 Cl#X 25 23 O%F

1 6 N—-P 8 22 G=P 12 25 Si=Si 19 6 P#P 25 24 O%Br
1 7 N—-F 8 23 CG=F 12 26 Sl 19 7 P#F 25 25 O%Si
1 8 N—-Br 8 24 C=Br 12 31 S=X 19 8 P#Br 25 26 O%l

1 9 N-Si 8 25 G=Si 13 10 =l 19 9 P#Si 25 31 0O%X
1 10 N-1 8 26 =| 13 15 =X 19 10 P#l 26 4 S%S

1 15 N=X 8 31 C=X 15 31 X=X 19 15 P#X 26 5 S%CI
1 19 O-0 9 2 N=N 16 17 C#C 19 23 F#F 26 6 S%P
1 20 O-S 9 3 N=O 16 18 C#N 19 24 F#Br 26 7 S%F
1 21 O-ClI 9 4 N=S 16 19 C#0 19 25 F#Si 26 8 S%Br
1 22 O-P 9 5 N=ClI 16 20 C#S 19 26 F#l 26 9 S%Si
1 23 O-F 9 6 N=P 16 21 C#Cl 19 31 F#X 26 10 S%l

1 24 O-Br 9 7 N=F 16 22 C#P 20 8 Br#Br 26 15 S%X
1 25 O-Si 9 8 N=Br 16 23 CH#F 20 9 Br#Si 26 21 Cl%Cl
1 26 Ol 9 9 N=Si 16 24 C#Br 20 10 Br#l 26 22 Cl%P
1 31 O-X 9 10 N=I 16 25 C#Si 20 15 Br#X 26 23 Cl%F
2 4 S-S 9 15 N=X 16 26 C#l 20 25 Si#tSi 26 24 Cl%Br
2 5 S-ClI 9 19 =0 16 31 C#X 20 26 Si#l 26 25 Cl%Si
2 6 S-P 9 20 G=S 17 2 N#N 20 31 Si#tX 26 26 Cl%]
2 7 S-F 9 21 G=ClI 17 3 N#O 21 10 1#1 26 31 Cl%X
2 8 S-Br 9 22 o=P 17 4 N#S 21 15 I#X 27 6 P%P
2 9 S-Si 9 23 G=F 17 5 N#CI 23 31 X#X 27 7 P%F

2 10 Sl 9 24 O=Br 17 6 N#P 24 17 C%C 27 8 P%Br
2 15 S-X 9 25 O=Si 17 7 N#F 24 18 C%N 27 9 P%Si
2 21 CHCI 9 26 o=l 17 8 N#Br 24 19 C%0O 27 10 P%l

2 22 CHP 9 31 =X 17 9 N#Si 24 20 C%S 27 15 P%X
2 23 CHF 10 4 S=S 17 10 N#| 24 21 C%CI 27 23 F%F
2 24 CHBr 10 5 S=ClI 17 15 N#X 24 22 C%P 27 24 F%Br
2 25 CHSi 10 6 S=P 17 19 Oo#0O 24 23 C%F 27 25 F%Si
2 26 CHI 10 7 S=F 17 20 O#S 24 24 C%Br 27 26 F%l
2 31 CI-X 10 8 S=Br 17 21 O#Cl 24 25 C%Si 27 31 F%X
3 6 P-P 10 9 S=Si 17 22 o#P 24 26 C%I 28 8 Bro%Br
3 7 P-F 10 10 S 17 23 O#F 24 31 C%X 28 9 Bro%Si
3 8 P-Br 10 15 S=X 17 24 O#Br 28 10 Bro%l

3 9 P-Si 10 21 C+=ClI 17 25 O#Si 28 15 BrooX
3 10 Pl 10 22 CEP 17 26 O#l 28 25 Si%Si
3 15 P-X 10 23 CEF 17 31 O#X 28 26 Si%l

3 23 F~F 10 24 CHBr 28 31 Si%X

3 24 F—Br 10 25 CESi 29 10 1%l

3 25 FSi 10 26 CHl 29 15 19%X

3 26 I 10 31 CEX 31 31 X%X

3 31 X

In carrying out genetic algorithm optimizations we have  Finally, we can form a keyset by assigning a unique keybit
also made use of a “training set success measure”, whichto each of the descriptors encoded by the underlying key
differs from the “Briem and Lessel success measure” in that setting algorithm, assigning an occurrence count to each
the molecular data set used is the training set, not the onedescriptor of “set 1 or more times”.
defined by Briem and Lessel. Surprisal Calculations. The information theoretic concept

Basic Keysets UsedAs a starting point we used both the of a surprisal is defined &

166 bit MDL keyset and the 960 bit MDL keyset. As noted

earlier, the 960 bit keyset contains a number of keybits which | = —In(A/B)

can be set by more than one descriptor. If we remove all

those multiply mapped keybits we are left with a 726 bit where A and B are probabilities associated with observing
keyset. Alternatively, we can make each one of the descrip-the corresponding properties. Typically A is an experimen-
tors encoded in the 960 bit keyset correspond to one uniquetally observed probability and B is from a theoretically

keybit, yielding a 1387 bit keyset. derived “prior” distribution. The surprisal thus provides a
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Table 5. Custom and Sgroup Properties
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Table 6. Training Set Activity Classes

of success measures for the proposed keys as well as some

nl n2 n3 property MDDR activity code activity class

5 0 1 charge (in structure somewhere) 02452 TNF Inhibitor

5 0 2 isotope 09221 acetylcholinesterase inhibitor
5 0 3 “other” atom type 12453 lipid peroxidation inhibitor

5 0 4 CH 31430 angiotensin Il blocker

5 0 5 halogen 31500 calcium channel blocker

5 0 6 NH 54112 Ht-/K+-ATPase inhibitor

5 0 7 five-membered ring 71522 reverse transcriptase inhibitor
5 0 8 six-membered ring 71523 HIV-1 protease inhibitor

5 0 9 Kekule-aromatic ring 75721 aromatase inhibitor

5 0 10 seven-membered ring 78348 phospholipase A2 inhibitor

5 0 11 eight-membered ring 78351 lipoxygenase inhibitor

5 0 12 103< atom type< 256 78362 thymidylate synthetase inhibitor
5 0 13 more than one fragment 78371 collagenase inhibitor

5 1 1-31 atom types +31 78373 topoisomerase inhibitor

5 2 atom types 3163 78374 protein kinase C inhibitor

5 3 atom types 6495 78417 phosphodiesterase Ill inhibitor
5 4 atom types 96127 78418 phosphodiesterase IV inhibitor
5 5 atom types 128159

5 6 atom types 166191

5 7 atom types 192223 age® SUGAL provided the underlying genetic algorithm
5 8 atom types 224255 methods; custom C code was written to handle the calculation
5 9 atom type 256

5

5

5

5

5

5

5

5

5

5

5

5

5

5

11 component Sgroup type . - .

1 SRU Sgroup type ancillary utility functions. . S

11 monomer Sgroup type Training Set. Initial genetic algorithm optimization of

11 copolymer Sgroup type keysets used the Briem and Lessel data set for both

ﬁ ?;tfégamt'ﬂﬁ’,;&?%ﬁ;‘;ﬁgpe optimization and calculation of the final success measure.

11 block copolymer subtype As should _be expected, these GA optimizations, when run

11 graft Sgroup type to completion, were found to be overtrained. We therefore

11 formulation Sgroup type constructed an independent data set to use in the GA

11 10 mixture Sgroup type optimizations.

11 11 cross-link Sgroup type g »

1 12 modification Sgroup type This “training set” was culled from t_he MDDR datab&8e.

11 13 any polymer Sgroup type It consisted of 1700 compounds which belonged to one of

11 14 data Sgroup type 17 activity classes. Compounds which belonged to more than
51115thrus135 data Sgroup field number one activity class were removed from the data set. Each of

5 13 6 mer Sgroup type

the activity classes had more than 100 compounds, and so
] ) ... 100 were chosen at random from each activity class. Use of
symmetric measure of the degree to which the probabilities ¢qyal numbers of compounds in each activity class removed
in the two distributions differ. _ _ effects of differing class size from the “class-specific’ success
In this work we chose to associate A with the total measyre. Otherwise, classes with more members will tend
probability for keybits to be set by molecules in the five {4 haye higher success measures. Additionally, we did not
active classes and similarly associate B with the probability \,se any of the activity classes used in the Briem and Lessel
for keybits to be set in the one inactive class, using the gata set as a further step to orthogonalize the training and
molecules in the Briem and Lessel data set. evaluation data sets. The activity classes used, and their
Additionally, we noted that the frequency for a number \ppR activity codes, can be found in Table 6. A “training

of keybits was quite low, and so we also calculated the get 5ccess measure” could be calculated by substituting this
expected noise in the keybit frequency, assuming a PoissONyraining set for the Briem and Lessel data set in the success
distribution for the noise. This also allowed us to define a easure calculations outlined above.

surprisal S/N ratio by dividing the calculated surprisal by
the standard deviation of the noise

RESULTS AND DISCUSSION

Random Pruning of the 3234 Bit Keysetlt is instructive
to begin by considering the generation of keysets by random
where N, and N, are the keybit frequencies in the five active elimination of keybits from the 3234 bit keyset. Since each
and one inactive classes, respectively. keybit in the 3234 bit keyset corresponds to a single

Unlike the surprisal, this surprisal signal-to-noise ratio does descriptor, elimination of a keybit is equivalent to eliminating
depend on the size of the data sets; increasing the numbea descriptor from the keyset. Figure 1 shows the success
of compounds increases the calculated S/N ratio. However,measures for 96 such keysets, with sizes from 100 to 3200
because of the relatively low frequency of some of the keybits, which were generated from the 3234 bit keyset.
keybits, coupled with the small sample sizes, it was felt There is noise in the resulting graph, but it is clear that the
important to investigate the effects of explicitly accounting dependence of the observed success measure on the number
for statistical noise in these calculations. of keybits is quite weak above about 1000 keybits in the

Genetic Algorithm Optimization of Keysets. Use of keyset. Below that size there is a degradation in performance,
genetic algorithms to optimize the choice of keybits was which becomes noticeable by a keyset length of 500 keybits.
facilitated by use of the SUGAL Genetic Algorithm pack- Note, however, that even at lengths of 100 keybits the

SIN= [I/(1IN,+ 1/N)"
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Figure 1. Plot of success measure as a function of keyset size for Figure 3. Plot of success measure as a function of the surprisal
96 randomly generated keysets derived from the 3234 bit keyset. S/N threshold used in pruning the keysets.
Solid line is meant to guide the eye.
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Number of Keybits Figure 4. Plot of success measure as a function of the number of

Figure 2. Plot of success measure as a function of keyset size for keybits in the pruned keyset.
(a) randomly pruned 3234 bit keyset, (b) surprisal pruned 3234 bit ) ) )
keyset, and (c) surprisal S/N pruned 3234 bit keyset. located at a value of the surprisal S/N of 1.9, with 711 keybits

used in the keyset, and a success measure of 0.704.
performance has only degraded by about 25%. Note also We next pruned the 166, 726, 960, and 1387 bit keysets
that the curve in Figure 1 is merely meant to guide the eye. described above. Figure 3 shows a plot of the success

Surprisal Optimization of Basic Keysets.One might measures obtained as a function of the threshold surprisal
expect that a more effective pruning of keybits from a keyset S/N used in pruning the various keysets. Keysets were
could be obtained using the surprisal values or the surprisalobtained by eliminating all keybits with a surprisal S/N less
S/N ratio for the various keybits as part of the selection than the threshold. It is evident that the 166 bit keyset has
criterion. Keybits with surprisals of zero are set at a inferior performance to the other keysets and that its
statistically equal rate in both the composite of active classesperformance is not improved by the surprisal S/N pruning.
and in the inactive class. This should make them less active/The other keysets show some improvement in performance
inactive differentiating than keybits which have a signifi- as the pruning threshold is increased and appear to behave
cantly different probability of being set in these two classes. quite similarly as a function of the surprisal S/N. A broad

Figure 2 displays the results of pruning the 3234 bit keyset, maximum is found at a surprisal S/N of approximately 2,
using both surprisal and the surprisal S/N ratio as the with degradation of performance as the threshold is raised
selection criterion. In both cases keybits were eliminated with further.
the lowest surprisal or S/N values, and the cutoff values were  Figure 4 is an interesting recasting of this same data, this
successively increased. For these calculations we used théime as a function of keyset size. This plot shows the degree
Briem and Lessel data set to define the surprisals as well asof commonality in performance between the keysets as a
in evaluating the success measure. Also plotted in Figure 2function of size. Most evident is the significant degradation
are the results of the random pruning of the 3234 bit keyset. in performance observed below 200 keybits. Interestingly,

It is evident that using the raw surprisal yields keysets the performance of the 166 bit keyset lies on the curves for
which function significantly worse than those produced by the 1387 and 3234 bit keysets.
random pruning. In contrast, the results of pruning based on The similar performance of the various pruned keysets
the surprisal S/N ratio shows improvement over random seen in Figure 4 does not, however, imply commonality in
pruning. There is even a broad maximum in the successthe descriptors encoded in the keysets. Indeed, the overlap
measure at between 400 and 900 keybits. The maximum isin common descriptors between the unpruned 166 bit keyset
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Table 7. GA Results

initial 200 generations 400 generations
av mean success max. B.-L. t.s. B.-L. t.s.
bits success SD success bits success success bits success success
194 0.499 0.016 0.540 454 0.698 0.676 538 0.698 0.687
258 0.522 0.013 0.555 475 0.710 0.676 548 0.711 0.687
323 0.536 0.011 0.573 505 0.702 0.675 580 0.703 0.686
485 0.555 0.008 0.582 636 0.708 0.678 648 0.705 0.687
646 0.565 0.007 0.588 708 0.701 0.677 742 0.701 0.685
970 0.576 0.005 0.586 949 0.707 0.674 938 0.705 0.683
1293 0.582 0.004 0.591 1147 0.705 0.671 1088 0.708 0.680
1617 0.585 0.003 0.593 1391 0.698 0.665 1342 0.706 0.676
av 0.704 0.674 0.705 0.684

2B.-L. success: Briem Lessel success meadures. success: training set success measure.

and either the pruned 1387 keyset (S/N threskoll0, 173 Our initial calculations used a population of 200 keysets
keybits) or the 3234 keyset (S/N threshotkd 3.5, 182 which was propagated for 200 generations. To test the quality
keybits) is~16% and~11%, respectively. However, they of the convergence we extended these calculations for an
show very comparable success measures of 0.649, 0.652additional 200 generations. As can be seen from the averages
and 0.668. The pruned 1387 and 3234 keysets have morgeported at the bottom of Table 7 the Briem and Lessel
overlap, but it is still only about 66%. success measure changed by only 0.1%, suggesting that the
It is also interesting to note the behavior of the 726 bit calculations were well converged (at least locally) after 200
keyset as it is pruned. The full keyset performs worse than generations. The success measure evaluated using the training
the 1387 and 3234 bit keysets, but it exhibits a strong set did increase by 1.5%, presumably reflecting overtraining
maximum in performance for small keyset size. At a S/IN of the GA.
threshold of 1.9 it has a success measure of 0.708, and 208 Overall, genetic algorithm optimization did produce key-
keybits remaining in the keyset. This represents the bestsets with better performance than our initial keysets. The
performance observed for surprisal S/N-based pruning of abest keyset had a success measure of 0.711, with a size of
keyset. 548 bits. However, the average success measure of all the
Genetic Algorithm Optimization of Keysets. We next genetic algorithm optimized keysets was 0.704, slightly
turned to the use of Genetic Algorithm Optimization methods below the result for the best surprisal S/N pruned keyset.
for construction of optimal keysets. Preliminary runs were
carried out using the Briem and Lessel data set for both CONCLUSIONS
training and evaluation. Not surprisingly, the optimization o ] _
produced highly overtrained keysets which had high success We have demonstrated that it is possible to improve MDL
measures (up to 0.84) and abysmal performance on otheK€ySet performance by reoptimizing keysets for use in
problems. Further work was done using the alternate 1700molecular similarity. We have produced keysets with opti-

member training set described above in the optimization Mized success measures up to 0.711 versus the success
phase. measures of 0.649 and 0.670 for the standard MDL 166 and

Table 7 presents results from a grid of calculations run 960 bit keysets, Whi_ch were constructed and optimized for
starting with average fractions of 0.06, 0.08, 0.1, 015, 0.2, Substructure searching.
0.3, 0.4, and 0.5 of the keybits in the 3234 bit keyset used. In performing these optimizations on MDL-based keysets
These runs used a population of 200 keysets. The initial We observed that increasing keyset size had little effect on
success measures evaluated using the training set mirror th@verall performance for keysets larger than approximately
behavior seen in Figure 2, with success measures showing al000 bits. We also observed a striking similarity in perfor-
very weak dependence on keyset size, with the dependencénance between different keysets of similar size. This
becoming stronger for very small keysets. Also evident is Similarity in performance did not stem from the keysets being
the fact that the distribution of performance across any of composed of the same descriptors, since descriptor overlap
the populations is very narrow, with standard deviations of Was generally low between the optimized keysets encoun-
the distributions ranging from a high of 0.016 (or 3%) for tered here.
the smallest keysets down to 0.003 (or 0.5%) for the largest. A number of candidate keysets were produced using
We used a scale normalization scheme with a bias value ofrandom selection, surprisal-based selection, and surprisal
100 to try to mitigate the effects of these very narrow S/N-based selection. Surprisal-based selection of keybits was
distributions3* found to underperform random selection, while surprisal S/N

The Briem and Lessel and training set success measure®ased selection was found to outperform random selection.
for the optimized keysets show even less dependence onThe best performing keyset from this work contained 208
keyset size. We do note, however, that keysets which initially keybits and had a success measure of 0.708.
had fewer than an average of 700 keybits yielded optimized The great insensitivity of overall performance on both
keysets with more keybits, and keysets with and initial keyset size and identity of the descriptors encoded resulted
average of more than 700 keybits yielded optimized keysetsin great difficulty in attempts to optimize the performance
with fewer keybits. However, this trend was not strong using standard mathematical techniques. Genetic Algorithm
enough in our GA calculations to point to an optimal keyset optimization is a particularly powerful tool, but while it
size. succeeded in producing keysets with better performance, we
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were unsuccessful in locating a single globally optimum (12) Xue, L.; Stahura, F. L.; Godden, J. W.; Bajorath, J. Fingerprint Scaling

a0 _ Increases the Probability of Identifying Molecules with Similar Activity
keyset. Instead, we were able to produce families of well in Virtual Screening Calculationd. Chem. Inf. Comput. S001

performing keysets with defined starting keysets and defined, 41, 746-753.
but variable, numbers of keybits in the initial, unoptimized (13) Brown, R. D.; Martin, Y. C. Designing Combinatorial Library Mixtures

P Using a Genetic AlgorithmJ. Med. Chem1997, 40, 2304-2313.
key. Performance for the optimized keysets averaged 0.704, 14) Koehler, R. T.; Villar, H. O. Design of Screening Libraries Biased

with the best keyset having a success measure of 0.711 an for Pharmaceutical Discovery. Comput. Chem200Q 21, 1145~
a length of 548 keybits. 1152.

: : s 15) Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.;
This suggests that construction of optimized keysets needs( Weinberger, L. E. Neighborhood Behavior: A Useful Concept for

to be driven by known constraints, such as our use of Validation of “Molecular Diversity” Descriptorsl. Med. Chem1996
surprisal S/N, instead of autonomously, as is the case in our 39 3049-3059.

. . . . (16) Matter, H. Selecting Optimally Diverse Compounds from Structure
use of genetic algorlthms. Future work is fOCUSIhg on Databases: A Validation Study of Two-Dimensional and Three-

identification of data set-size independent constraints which Dimensional Molecular Descriptord. Med. Chem1997, 40, 1219~
can be used to direct the selection of descriptors used in __ 1229.

. . . ... (17) Rhodes, N.; Willet, P.; Dunbar, J. B., Jr.; Humblet, C. Bit-String
keyset construction. Once such constraints can be identified™ "’ \1athods for Selective Compound Acquisitich.Chem. Inf. Compu.

we will also extend our work to include keysets constructed Sci. 200Q 40, 210-214.

with occurrence counts different from “one or more”. (18) Ahrens, E. K. F. Customization for Chemical Database Applications.
In Chemical Structures; The International Language of Chemistry;
Warr, W. A., Ed.; Springer-Verlag: Berlin, 1988; pp 9711, and
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