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For a number of years MDL products have exposed both 166 bit and 960 bit keysets based on 2D descriptors.
These keysets were originally constructed and optimized for substructure searching. We report on
improvements in the performance of MDL keysets which are reoptimized for use in molecular similarity.
Classification performance for a test data set of 957 compounds was increased from 0.65 for the 166 bit
keyset and 0.67 for the 960 bit keyset to 0.71 for a surprisal S/N pruned keyset containing 208 bits and 0.71
for a genetic algorithm optimized keyset containing 548 bits. We present an overview of the underlying
technology supporting the definition of descriptors and the encoding of these descriptors into keysets. This
technology allows definition of descriptors as combinations of atom properties, bond properties, and atomic
neighborhoods at various topological separations as well as supporting a number of custom descriptors.
These descriptors can then be used to set one or more bits in a keyset. We constructed various keysets and
optimized their performance in clustering bioactive substances. Performance was measured using methodology
developed by Briem and Lessel. “Directed pruning” was carried out by eliminating bits from the keysets on
the basis of random selection, values of the surprisal of the bit, or values of the surprisal S/N ratio of the
bit. The random pruning experiment highlighted the insensitivity of keyset performance for keyset lengths
of more than 1000 bits. Contrary to initial expectations, pruning on the basis of the surprisal values of the
various bits resulted in keysets which underperformed those resulting from random pruning. In contrast,
pruning on the basis of the surprisal S/N ratio was found to yield keysets which performed better than those
resulting from random pruning. We also explored the use of genetic algorithms in the selection of optimal
keysets. Once more the performance was only a weak function of keyset size, and the optimizations failed
to identify a single globally optimal keyset. Instead multiple, equally optimal keysets could be produced
which had relatively low overlap of the descriptors they encoded.

INTRODUCTION

There are a number of tasks in the drug-discovery
workflow which require grouping and/or separating mol-
ecules based on some criteria. Clustering1,2 and diversity
analysis3,4 are often implemented using distances or similarity
measures based on binary keysets. Databases and libraries
can be characterized based on statistical distribution func-
tions5 of bits within keysets, in addition to the more familiar
calculations based on Pfizer “Rule of Five”,6 distribution
functions,7,8 or atom occurrence counts.9 Lead identification
using fingerprints based on binary keysets continues to be
examined.10-12 Finally, the related topics of library design13,14

and optimal compound selection15-17 often use binary
keysets.

In this paper we will use the following definitions to refer
to keyset components. “Descriptor” will be used to refer to
a molecular feature. Descriptors can be encoded into binary
“keybits”. There can be a one-to-one relationship between
descriptors and keybits, or hashing can be used to create a
many-to-one or many-to-many relationship between descrip-
tors and keybits. An ordered collection of keybits constitute
a “keyset”. “Keys” is context-sensitive and is used to refer
either to keybits or keysets.

Historically, molecular keysets have been used for sub-
structure searching.18,19For example, a number of topological

features of a query molecule can be used to set keybits; a
search for molecules matching that query could then be
facilitated by screening out all molecules in the database
which do not set those same keybits. An optimization strategy
for such a task might include the choice of properties to
encode which would be structure differentiating and arrange-
ment of them within the keyset in order of increasing
probability of occurrence within a reference data set.

Indeed, this is the genesis of two common MDL keysets:
one containing 960 keybits and the other containing a subset
of 166 keybits.20 Their use in substructure searching has been
largely obviated by index-based search techniques.21 They
have, however, found a variety of uses in the drug-discovery
workflow.

There continues to be interest in the design of keysets
which will provide more performance in a drug-discovery
workflow. Recent work includes examination ofin Vitro
affinity fingerprints,22,23 in silico (or virtual) affinity
fingerprints,24-26 and feature trees27 as methods of producing
keysets optimized for similarity searches. Briem and Lessel26

carried out a study comparing various 2D descriptors with
several virtual affinity fingerprints. They found that the 2D
descriptors out-performed the affinity fingerprint methods.

The existing MDL 2D keyset technology can, in theory,
produce in excess of 3 million distinct keybits, which can
be combined into innumerable keysets. We wanted to explore
the reoptimization of keysets and determine how much
performance could be improved by such reoptimization.* Corresponding author phone: (510)895-1313; e-mail: jdurant@mdli.com.
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COMPUTATIONAL METHOD

Structure of MDL Keys. The underlying technology used
in the MDL 2D keysets is based on a general molecule
perception algorithm, which perceives a number of atom,
bond, and custom properties. The mapping of these properties
into descriptors and then into the keybits and ultimately
keysets is under software control.

Specifically, a keybit is defined by nine numbers, which
we will denote by n1 through n9. The first four numbers
encode the various properties into descriptors. The remaining
five numbers determine which keybits are set by the
descriptor.

General Definitions. MDL has specific definitions for a
number of general chemistry terms. “Heteroatom” is used
to refer to any non-C, non-H atom, and is abbreviated “Q”.
“Halogens” consist of F, Cl, Br, and I. “Other” atoms include
any atoms other than H, C, N, O, Si, P, S, F, Cl, Br, and I
and is abbreviated “X”. “Aromatic” refers to bonds which
are either “Kekule aromatic” or “arom5”. “Kekule aromatic”
bonds are those in a six-membered ring system with
alternating double and single bonds or the perimeter bonds

of an azulene. “Arom5” bonds are those in a five-membered
ring with two double bonds and a “heteroatom” or C- at the
apex of the ring.

Descriptor Encoding. The largest block of descriptors
makes use of algorithmically calculated atom-based proper-
ties. Specifically we perceive 26 properties of type P, as listed
in Table 1, and 30 properties of type A (most of which are
the same as type P properties), as listed in Table 2.
Additionally we perceive 32 one-atom environments, as listed
in Table 3.

One class of possible atom-based descriptors result from
the presence of one or two properties of type A located on
a single atom. For this class n1) 0; n2 and n3 encode the
appropriate values of A.

A second class of possible atom-based descriptors result
from the presence of an atom with property P, separated by
one to four bonds from a second atom with a property P′.
For this class n1 encodes the number of bonds between the
atoms, and n2 and n3 encode the appropriate values of P
and P′.

A third class of possible atom-based descriptors results
from the presence of an atom with property A located in the
center of a particular atom environment. In this case n1)
7, n2 encodes the atom environment, and n3 encodes the
property A.

Another block of descriptors encodes one of 264 atom-
bond-atom combinations. Atoms include C, N, O, Si, P, S,

Table 1. Atom-Based Properties

n P

0 null
1 atom with at least three neighbors
2 heteroatom
3 atom involved in one or more multiple bonds, not aromatic
4 atom with at least four neighbors
5 atom with at least two heteroatom neighbors
6 atom with at least three heteroatom neighbors
7 heteroatom with at least one hydrogen attached
8 carbon with at least two single bonds and at least two

hydrogens attached
9 carbon with at least one single bond and at least three

hydrogens attached
10 halogen
11 atom has at least three single bonds
12 atom is in at least two different six-membered rings
13 not used
14 atom has more than two ring bonds
15 atom is at a ring/chain boundary. When a comparison is done

with another atom the path passes through the chain bond.
16 atom is at an aromatic/nonaromatic boundary. When a

comparison is done with another atom the path
passes through the aromatic bond.

17 atom with more than one chain bond
18 atom is at a ring/chain boundary. When a comparison is done

with another atom the path passes through the ring bond.
19 atom is at an aromatic/nonaromatic boundary. When a

comparison is done with another atom the
path passes through the nonaromatic bond.

20 atom is a heteroatom in a ring.
21 rare properties: atom with five or more neighbors, atom in

four or more rings, or atom types other than
H, C, N, O, S, F, Cl, Br, or I

22 rare properties: atom has a charge, is an isotope, has two or
more multiple bonds, or has a triple bond.

23 nitrogen
24 sulfur
25 oxygen
26 not used
27 not used
28 not used
29 not used
30 atom has two neighbors, each with three or more neighbors

(including the central atom).
31 atom has two hydrocarbon (CH2) neighbors

Table 2. Single-Atom Atom-Based Properties

n A

0 null
1 atom with at least three neighbors
2 heteroatom
3 atom involved in some multiple bonds, not aromatic
4 atom with at least four neighbors
5 atom with at least two heteroatom neighbors
6 atom with at least three heteroatom neighbors
7 heteroatom with at least one hydrogen attached
8 carbon with at least two single bonds and at least two

hydrogens attached
9 carbon atom in a CdC double bond

10 atom has at least two single bonds
11 atom has at least three single bonds
12 atom is in at least two different six-membered rings
13 not used
14 atom has more than two ring bonds
15 atom is at a ring/chain boundary
16 central atom is at an aromatic/nonaromatic boundary
17 atom with more than one chain bond
18 atom is in a ring
19 aromatic atom
20 atom is a heteroatom in a ring.
21 rare properties: atom with five or more neighbors, atom in

four or more rings, or atom types other than
H, C, N, O, S, F, Cl, Br, or I

22 rare properties: atom has a charge, is an isotope, has two or
more multiple bonds, or has a triple bond.

23 nitrogen
24 sulfur
25 oxygen
26 atom in a three-membered ring
27 atom in a four-membered ring
28 atom in a five-membered ring
29 atom in a six-membered ring
30 atom has two neighbors, each with three or more neighbors

(including the central atom).
31 atom has two hydrocarbon (CH2) neighbors
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F, Cl, Br, I, and “other” (X), with bond types of “single”
(-), “double” ()), “triple” (#), and “ring” (%). These
descriptors have n1) 6; n2 and n3 are set as shown in Table
4.

Yet another block encodes a number of custom and Sgroup
features.28 These can be found in Table 5.

The first subblock of these descriptors encodes a series
of properties which are used in the 166 bit MDL keyset.
The next subblock of 256 descriptors encodes atom types
of 1-256. Normally atom types between 1 and 103 cor-
respond directly with periodic table elements. The range
104-256 allows encoding of custom atom types.

A final subblock of descriptors encode a variety of MDL
Sgroup properties.

In converting these descriptors to keybits we also need to
set an occurrence count, which is encoded in n4. This allows
us to define descriptors for occurrence counts of “1 or more”
up to “999 or more”.

KeyBit Encoding. The last five numbers in the keybit
definition are used to control which keybit(s) are set by the
descriptor defined by the first four numbers. N5 is used to
specify the number of keybits which are set, which is in the
range of 1 to 3. N6 is a flag indicating whether (1) or not
(0) the keybit(s) set are also set by other descriptors. The
final three numbers, n7, n8, and n9, identify the keybits, with
“0” used for padding.

Putting it Together. At this point we can consider the
meaning of an example keybit:

This keybit can be translated to the following: At least two
occurrences (n4) of an atom in a multiple, nonaromatic bond
(n2) located two bonds (n1) away from an atom with at least
two heteroatom neighbors (n3). The descriptor sets three
keybits (n5), which can be set by other descriptors (n6). The
keybits set are 479, 469, and 763 (n7-n9).

A number of properties are incompatible, resulting in the
fact that fewer descriptors are chemically possible than are
mathematically allowed. Additionally, a number of descrip-
tors can be encoded two different ways, most frequently by

reversing n2 and n3. The algorithm used will only set keybits
for n2 less than or equal to n3 in these instances. As a result
we can encode 3234 different descriptors encoding occur-
rence counts of “1 or more”. Since these descriptors can have
occurrence counts of “1 or more” to “999 or more”, we have
the ability, in theory, to produce in excess of 3 million
distinct descriptors, which can be combined into innumerable
keysets. Our question is then “How does one select an
optimal set of descriptors for use in drug discovery work-
flows, or, more concretely, for use in molecular similarity
calculations?”.

Success Measure.We chose to adopt a success measure
defined by Briem and Lessel.26 Their success measure is
calculated by taking the mean fraction of molecular nearest
neighbors which are of the same activity class as the target
active compound, and averaging this quantity over all active
target compounds. This measure should be directly applicable
to clustering and diversity applications and should also reflect
performance expected in other drug discovery applications.

To implement this method Briem and Lessel have defined
a set of six categories of molecules selected from the MDDR
database.29 These molecules consist of 134 PAF antagonists,
49 5-HT3 antagonists, 49 TXA2 antagonists, 40 ACE
inhibitors, 111 HMG-CoA reductase inhibitors, and 574 other
compounds selected at random from MDDR which were not
primarily members of the already selected activity classes.
The first five categories will be referred to as “actives”, the
randomly chosen molecules as “inactives”. The total number
of molecules in the data set is 957.

The next step in calculating the success measure for the
keyset under investigation is to collect nearest neighbors for
all the compounds in the “active” classes. In the original
paper Euclidean distances between keys were used; we use
the computationally easier Hamming distance, defined as the
number of bits which are different between the two bit sets.
For binary keys the Euclidean distance is the square root of
the Hamming distance. Use of the Hamming distance results
in the same nearest neighbors as those found using a
Euclidean metric. The fraction of the top 10 nearest-
neighbors which are in the same activity class as the target
defines the success measure for that target molecule. The
total success measure is then the average of the individual
success measures for all the active molecules. We have added
explicit consideration of ties by including all molecules which
have distances equal to the tenth nearest neighbor. This
removes a dependence on the order that the molecules are
considered which was present in the original method. It also
has the effect of reducing the success measure for the 166
keybit MDL keyset to 0.65 from the 0.67 reported by Briem
and Lessel.26

Completely random compound selection of molecules will
yield a nonzero fraction of compounds of the same activity
class within the 10 nearest neighbors. Consideration of the
average probability of this occurring for the five active
classes yields an average success measure of 0.08 for random
selection.

Use of Hamming distances in this context most probably
results in a performance degradation relative to results using
Tanimoto distances. However, calculation of Hamming
distances can be easily optimized, and the resulting optimized
code gave us increased latitude in carrying out GA studies
(vide infra).

Table 3. Atomic Environments

n atom environmenta n atom environmenta

0 C(CC) 16 Q(CC)
1 C(CCC) 17 Q(CCC)
2 C(CN) 18 Q(CN)
3 C(CCN) 19 Q(CCN)
4 C(NN) 20 Q(NN)
5 C(NNC) 21 Q(CNN)
6 C(NNN) 22 Q(NNN)
7 C(CO) 23 Q(CO)
8 C(CCO) 24 Q(CCO)
9 C(NO) 25 Q(NO)

10 C(NCO) 26 Q(CNO)
11 C(NNO) 27 Q(NNO)
12 C(OO) 28 Q(OO)
13 C(COO) 29 Q(COO)
14 C(NOO) 30 Q(NOO)
15 C(OOO) 31 Q(OOO)

a The first symbol is the central atom, with atoms bonded to the
central atom listed in parentheses. “Q” is any non-C, non-H atom. If
only two atoms are in parentheses, there is no implication concerning
the other atoms bonded to the central atom.

position: n1 n2 n3 n4 n5 n6 n7 n8 n9
key: 2 3 5 2 3 1 479 469 763

MDL K EYS FOR USE IN DRUG DISCOVERY J. Chem. Inf. Comput. Sci., Vol. 42, No. 6, 20021275



In carrying out genetic algorithm optimizations we have
also made use of a “training set success measure”, which
differs from the “Briem and Lessel success measure” in that
the molecular data set used is the training set, not the one
defined by Briem and Lessel.

Basic Keysets Used.As a starting point we used both the
166 bit MDL keyset and the 960 bit MDL keyset. As noted
earlier, the 960 bit keyset contains a number of keybits which
can be set by more than one descriptor. If we remove all
those multiply mapped keybits we are left with a 726 bit
keyset. Alternatively, we can make each one of the descrip-
tors encoded in the 960 bit keyset correspond to one unique
keybit, yielding a 1387 bit keyset.

Finally, we can form a keyset by assigning a unique keybit
to each of the descriptors encoded by the underlying key
setting algorithm, assigning an occurrence count to each
descriptor of “set 1 or more times”.

Surprisal Calculations. The information theoretic concept
of a surprisal is defined as30

where A and B are probabilities associated with observing
the corresponding properties. Typically A is an experimen-
tally observed probability and B is from a theoretically
derived “prior” distribution. The surprisal thus provides a

Table 4. Atom-Bond-Atom Properties

n2 n3 n2 n3 n2 n3 n2 n3 n2 n3

0 17 C-C 4 8 Br-Br 11 6 PdP 18 4 S#S 25 2 N%N
0 18 C-N 4 9 Br-Si 11 7 PdF 18 5 S#Cl 25 3 N%O
0 19 C-O 4 10 Br-I 11 8 PdBr 18 6 S#P 25 4 N%S
0 20 C-S 4 15 Br-X 11 9 PdSi 18 7 S#F 25 5 N%Cl
0 21 C-Cl 4 25 Si-Si 11 10 PdI 18 8 S#Br 25 6 N%P
0 22 C-P 4 26 Si-I 11 15 P)X 18 9 S#Si 25 7 N%F
0 23 C-F 4 31 Si-X 11 23 FdF 18 10 S#I 25 8 N%Br
0 24 C-Br 5 10 I-I 11 24 FdBr 18 15 S#X 25 9 N%Si
0 25 C-Si 5 15 I-X 11 25 FdSi 18 21 Cl#Cl 25 10 N%I
0 26 C-I 7 31 X-X 11 26 FdI 18 22 Cl#P 25 15 N%X
0 31 C-X 8 17 CdC 11 31 F)X 18 23 Cl#F 25 19 O%O
1 2 N-N 8 18 CdN 12 8 BrdBr 18 24 Cl#Br 25 20 O%S
1 3 N-O 8 19 CdO 12 9 BrdSi 18 25 Cl#Si 25 21 O%Cl
1 4 N-S 8 20 CdS 12 10 BrdI 18 26 Cl#I 25 22 O%P
1 5 N-Cl 8 21 CdCl 12 15 Br)X 18 31 Cl#X 25 23 O%F
1 6 N-P 8 22 CdP 12 25 SidSi 19 6 P#P 25 24 O%Br
1 7 N-F 8 23 CdF 12 26 SidI 19 7 P#F 25 25 O%Si
1 8 N-Br 8 24 CdBr 12 31 Si)X 19 8 P#Br 25 26 O%I
1 9 N-Si 8 25 CdSi 13 10 IdI 19 9 P#Si 25 31 O%X
1 10 N-I 8 26 CdI 13 15 I)X 19 10 P#I 26 4 S%S
1 15 N-X 8 31 C)X 15 31 X)X 19 15 P#X 26 5 S%Cl
1 19 O-O 9 2 NdN 16 17 C#C 19 23 F#F 26 6 S%P
1 20 O-S 9 3 NdO 16 18 C#N 19 24 F#Br 26 7 S%F
1 21 O-Cl 9 4 NdS 16 19 C#O 19 25 F#Si 26 8 S%Br
1 22 O-P 9 5 NdCl 16 20 C#S 19 26 F#I 26 9 S%Si
1 23 O-F 9 6 NdP 16 21 C#Cl 19 31 F#X 26 10 S%I
1 24 O-Br 9 7 NdF 16 22 C#P 20 8 Br#Br 26 15 S%X
1 25 O-Si 9 8 NdBr 16 23 C#F 20 9 Br#Si 26 21 Cl%Cl
1 26 O-I 9 9 NdSi 16 24 C#Br 20 10 Br#I 26 22 Cl%P
1 31 O-X 9 10 NdI 16 25 C#Si 20 15 Br#X 26 23 Cl%F
2 4 S-S 9 15 N)X 16 26 C#I 20 25 Si#Si 26 24 Cl%Br
2 5 S-Cl 9 19 OdO 16 31 C#X 20 26 Si#I 26 25 Cl%Si
2 6 S-P 9 20 OdS 17 2 N#N 20 31 Si#X 26 26 Cl%I
2 7 S-F 9 21 OdCl 17 3 N#O 21 10 I#I 26 31 Cl%X
2 8 S-Br 9 22 OdP 17 4 N#S 21 15 I#X 27 6 P%P
2 9 S-Si 9 23 OdF 17 5 N#Cl 23 31 X#X 27 7 P%F
2 10 S-I 9 24 OdBr 17 6 N#P 24 17 C%C 27 8 P%Br
2 15 S-X 9 25 OdSi 17 7 N#F 24 18 C%N 27 9 P%Si
2 21 Cl-Cl 9 26 OdI 17 8 N#Br 24 19 C%O 27 10 P%I
2 22 Cl-P 9 31 O)X 17 9 N#Si 24 20 C%S 27 15 P%X
2 23 Cl-F 10 4 SdS 17 10 N#I 24 21 C%Cl 27 23 F%F
2 24 Cl-Br 10 5 SdCl 17 15 N#X 24 22 C%P 27 24 F%Br
2 25 Cl-Si 10 6 SdP 17 19 O#O 24 23 C%F 27 25 F%Si
2 26 Cl-I 10 7 SdF 17 20 O#S 24 24 C%Br 27 26 F%I
2 31 Cl-X 10 8 SdBr 17 21 O#Cl 24 25 C%Si 27 31 F%X
3 6 P-P 10 9 SdSi 17 22 O#P 24 26 C%I 28 8 Br%Br
3 7 P-F 10 10 SdI 17 23 O#F 24 31 C%X 28 9 Br%Si
3 8 P-Br 10 15 S)X 17 24 O#Br 28 10 Br%I
3 9 P-Si 10 21 CldCl 17 25 O#Si 28 15 Br%X
3 10 P-I 10 22 CldP 17 26 O#I 28 25 Si%Si
3 15 P-X 10 23 CldF 17 31 O#X 28 26 Si%I
3 23 F-F 10 24 CldBr 28 31 Si%X
3 24 F-Br 10 25 CldSi 29 10 I%I
3 25 F-Si 10 26 CldI 29 15 I%X
3 26 F-I 10 31 Cl)X 31 31 X%X
3 31 F-X

I ) -ln(A/B)
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symmetric measure of the degree to which the probabilities
in the two distributions differ.

In this work we chose to associate A with the total
probability for keybits to be set by molecules in the five
active classes and similarly associate B with the probability
for keybits to be set in the one inactive class, using the
molecules in the Briem and Lessel data set.

Additionally, we noted that the frequency for a number
of keybits was quite low, and so we also calculated the
expected noise in the keybit frequency, assuming a Poisson
distribution for the noise. This also allowed us to define a
surprisal S/N ratio by dividing the calculated surprisal by
the standard deviation of the noise

where Na and Nb are the keybit frequencies in the five active
and one inactive classes, respectively.

Unlike the surprisal, this surprisal signal-to-noise ratio does
depend on the size of the data sets; increasing the number
of compounds increases the calculated S/N ratio. However,
because of the relatively low frequency of some of the
keybits, coupled with the small sample sizes, it was felt
important to investigate the effects of explicitly accounting
for statistical noise in these calculations.

Genetic Algorithm Optimization of Keysets. Use of
genetic algorithms to optimize the choice of keybits was
facilitated by use of the SUGAL Genetic Algorithm pack-

age.31 SUGAL provided the underlying genetic algorithm
methods; custom C code was written to handle the calculation
of success measures for the proposed keys as well as some
ancillary utility functions.

Training Set. Initial genetic algorithm optimization of
keysets used the Briem and Lessel data set for both
optimization and calculation of the final success measure.
As should be expected, these GA optimizations, when run
to completion, were found to be overtrained. We therefore
constructed an independent data set to use in the GA
optimizations.

This “training set” was culled from the MDDR database.29

It consisted of 1700 compounds which belonged to one of
17 activity classes. Compounds which belonged to more than
one activity class were removed from the data set. Each of
the activity classes had more than 100 compounds, and so
100 were chosen at random from each activity class. Use of
equal numbers of compounds in each activity class removed
effects of differing class size from the “class-specific” success
measure. Otherwise, classes with more members will tend
to have higher success measures. Additionally, we did not
use any of the activity classes used in the Briem and Lessel
data set as a further step to orthogonalize the training and
evaluation data sets. The activity classes used, and their
MDDR activity codes, can be found in Table 6. A “training
set success measure” could be calculated by substituting this
training set for the Briem and Lessel data set in the success
measure calculations outlined above.

RESULTS AND DISCUSSION

Random Pruning of the 3234 Bit Keyset.It is instructive
to begin by considering the generation of keysets by random
elimination of keybits from the 3234 bit keyset. Since each
keybit in the 3234 bit keyset corresponds to a single
descriptor, elimination of a keybit is equivalent to eliminating
a descriptor from the keyset. Figure 1 shows the success
measures for 96 such keysets, with sizes from 100 to 3200
keybits, which were generated from the 3234 bit keyset.
There is noise in the resulting graph, but it is clear that the
dependence of the observed success measure on the number
of keybits is quite weak above about 1000 keybits in the
keyset. Below that size there is a degradation in performance,
which becomes noticeable by a keyset length of 500 keybits.
Note, however, that even at lengths of 100 keybits the

Table 5. Custom and Sgroup Properties

n1 n2 n3 property

5 0 1 charge (in structure somewhere)
5 0 2 isotope
5 0 3 “other” atom type
5 0 4 CH3

5 0 5 halogen
5 0 6 NH2

5 0 7 five-membered ring
5 0 8 six-membered ring
5 0 9 Kekule-aromatic ring
5 0 10 seven-membered ring
5 0 11 eight-membered ring
5 0 12 103< atom type< 256
5 0 13 more than one fragment
5 1 1-31 atom types 1-31
5 2 0-31 atom types 31-63
5 3 0-31 atom types 64-95
5 4 0-31 atom types 96-127
5 5 0-31 atom types 128-159
5 6 0-31 atom types 160-191
5 7 0-31 atom types 192-223
5 8 0-31 atom types 224-255
5 9 1 atom type 256
5 11 1 component Sgroup type
5 11 2 SRU Sgroup type
5 11 3 monomer Sgroup type
5 11 4 copolymer Sgroup type
5 11 5 alternating copolymer subtype
5 11 6 random copolymer subtype
5 11 7 block copolymer subtype
5 11 8 graft Sgroup type
5 11 9 formulation Sgroup type
5 11 10 mixture Sgroup type
5 11 11 cross-link Sgroup type
5 11 12 modification Sgroup type
5 11 13 any polymer Sgroup type
5 11 14 data Sgroup type

5 11 15 thru 5 13 5 data Sgroup field number
5 13 6 mer Sgroup type

S/N ) |I/(1/Na + 1/Nb)
1/2|

Table 6. Training Set Activity Classes

MDDR activity code activity class

02452 TNF Inhibitor
09221 acetylcholinesterase inhibitor
12453 lipid peroxidation inhibitor
31430 angiotensin II blocker
31500 calcium channel blocker
54112 H+/K+-ATPase inhibitor
71522 reverse transcriptase inhibitor
71523 HIV-1 protease inhibitor
75721 aromatase inhibitor
78348 phospholipase A2 inhibitor
78351 lipoxygenase inhibitor
78362 thymidylate synthetase inhibitor
78371 collagenase inhibitor
78373 topoisomerase inhibitor
78374 protein kinase C inhibitor
78417 phosphodiesterase III inhibitor
78418 phosphodiesterase IV inhibitor
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performance has only degraded by about 25%. Note also
that the curve in Figure 1 is merely meant to guide the eye.

Surprisal Optimization of Basic Keysets. One might
expect that a more effective pruning of keybits from a keyset
could be obtained using the surprisal values or the surprisal
S/N ratio for the various keybits as part of the selection
criterion. Keybits with surprisals of zero are set at a
statistically equal rate in both the composite of active classes
and in the inactive class. This should make them less active/
inactive differentiating than keybits which have a signifi-
cantly different probability of being set in these two classes.

Figure 2 displays the results of pruning the 3234 bit keyset,
using both surprisal and the surprisal S/N ratio as the
selection criterion. In both cases keybits were eliminated with
the lowest surprisal or S/N values, and the cutoff values were
successively increased. For these calculations we used the
Briem and Lessel data set to define the surprisals as well as
in evaluating the success measure. Also plotted in Figure 2
are the results of the random pruning of the 3234 bit keyset.

It is evident that using the raw surprisal yields keysets
which function significantly worse than those produced by
random pruning. In contrast, the results of pruning based on
the surprisal S/N ratio shows improvement over random
pruning. There is even a broad maximum in the success
measure at between 400 and 900 keybits. The maximum is

located at a value of the surprisal S/N of 1.9, with 711 keybits
used in the keyset, and a success measure of 0.704.

We next pruned the 166, 726, 960, and 1387 bit keysets
described above. Figure 3 shows a plot of the success
measures obtained as a function of the threshold surprisal
S/N used in pruning the various keysets. Keysets were
obtained by eliminating all keybits with a surprisal S/N less
than the threshold. It is evident that the 166 bit keyset has
inferior performance to the other keysets and that its
performance is not improved by the surprisal S/N pruning.
The other keysets show some improvement in performance
as the pruning threshold is increased and appear to behave
quite similarly as a function of the surprisal S/N. A broad
maximum is found at a surprisal S/N of approximately 2,
with degradation of performance as the threshold is raised
further.

Figure 4 is an interesting recasting of this same data, this
time as a function of keyset size. This plot shows the degree
of commonality in performance between the keysets as a
function of size. Most evident is the significant degradation
in performance observed below 200 keybits. Interestingly,
the performance of the 166 bit keyset lies on the curves for
the 1387 and 3234 bit keysets.

The similar performance of the various pruned keysets
seen in Figure 4 does not, however, imply commonality in
the descriptors encoded in the keysets. Indeed, the overlap
in common descriptors between the unpruned 166 bit keyset

Figure 1. Plot of success measure as a function of keyset size for
96 randomly generated keysets derived from the 3234 bit keyset.
Solid line is meant to guide the eye.

Figure 2. Plot of success measure as a function of keyset size for
(a) randomly pruned 3234 bit keyset, (b) surprisal pruned 3234 bit
keyset, and (c) surprisal S/N pruned 3234 bit keyset.

Figure 3. Plot of success measure as a function of the surprisal
S/N threshold used in pruning the keysets.

Figure 4. Plot of success measure as a function of the number of
keybits in the pruned keyset.
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and either the pruned 1387 keyset (S/N threshold) 3.0, 173
keybits) or the 3234 keyset (S/N threshold) 3.5, 182
keybits) is∼16% and∼11%, respectively. However, they
show very comparable success measures of 0.649, 0.652,
and 0.668. The pruned 1387 and 3234 keysets have more
overlap, but it is still only about 66%.

It is also interesting to note the behavior of the 726 bit
keyset as it is pruned. The full keyset performs worse than
the 1387 and 3234 bit keysets, but it exhibits a strong
maximum in performance for small keyset size. At a S/N
threshold of 1.9 it has a success measure of 0.708, and 208
keybits remaining in the keyset. This represents the best
performance observed for surprisal S/N-based pruning of a
keyset.

Genetic Algorithm Optimization of Keysets. We next
turned to the use of Genetic Algorithm Optimization methods
for construction of optimal keysets. Preliminary runs were
carried out using the Briem and Lessel data set for both
training and evaluation. Not surprisingly, the optimization
produced highly overtrained keysets which had high success
measures (up to 0.84) and abysmal performance on other
problems. Further work was done using the alternate 1700
member training set described above in the optimization
phase.

Table 7 presents results from a grid of calculations run
starting with average fractions of 0.06, 0.08, 0.1, 015, 0.2,
0.3, 0.4, and 0.5 of the keybits in the 3234 bit keyset used.
These runs used a population of 200 keysets. The initial
success measures evaluated using the training set mirror the
behavior seen in Figure 2, with success measures showing a
very weak dependence on keyset size, with the dependence
becoming stronger for very small keysets. Also evident is
the fact that the distribution of performance across any of
the populations is very narrow, with standard deviations of
the distributions ranging from a high of 0.016 (or 3%) for
the smallest keysets down to 0.003 (or 0.5%) for the largest.
We used a scale normalization scheme with a bias value of
100 to try to mitigate the effects of these very narrow
distributions.31

The Briem and Lessel and training set success measures
for the optimized keysets show even less dependence on
keyset size. We do note, however, that keysets which initially
had fewer than an average of 700 keybits yielded optimized
keysets with more keybits, and keysets with and initial
average of more than 700 keybits yielded optimized keysets
with fewer keybits. However, this trend was not strong
enough in our GA calculations to point to an optimal keyset
size.

Our initial calculations used a population of 200 keysets
which was propagated for 200 generations. To test the quality
of the convergence we extended these calculations for an
additional 200 generations. As can be seen from the averages
reported at the bottom of Table 7 the Briem and Lessel
success measure changed by only 0.1%, suggesting that the
calculations were well converged (at least locally) after 200
generations. The success measure evaluated using the training
set did increase by 1.5%, presumably reflecting overtraining
of the GA.

Overall, genetic algorithm optimization did produce key-
sets with better performance than our initial keysets. The
best keyset had a success measure of 0.711, with a size of
548 bits. However, the average success measure of all the
genetic algorithm optimized keysets was 0.704, slightly
below the result for the best surprisal S/N pruned keyset.

CONCLUSIONS

We have demonstrated that it is possible to improve MDL
keyset performance by reoptimizing keysets for use in
molecular similarity. We have produced keysets with opti-
mized success measures up to 0.711 versus the success
measures of 0.649 and 0.670 for the standard MDL 166 and
960 bit keysets, which were constructed and optimized for
substructure searching.

In performing these optimizations on MDL-based keysets
we observed that increasing keyset size had little effect on
overall performance for keysets larger than approximately
1000 bits. We also observed a striking similarity in perfor-
mance between different keysets of similar size. This
similarity in performance did not stem from the keysets being
composed of the same descriptors, since descriptor overlap
was generally low between the optimized keysets encoun-
tered here.

A number of candidate keysets were produced using
random selection, surprisal-based selection, and surprisal
S/N-based selection. Surprisal-based selection of keybits was
found to underperform random selection, while surprisal S/N
based selection was found to outperform random selection.
The best performing keyset from this work contained 208
keybits and had a success measure of 0.708.

The great insensitivity of overall performance on both
keyset size and identity of the descriptors encoded resulted
in great difficulty in attempts to optimize the performance
using standard mathematical techniques. Genetic Algorithm
optimization is a particularly powerful tool, but while it
succeeded in producing keysets with better performance, we

Table 7. GA Results

initial 200 generations 400 generations

av
bits

mean
success

success
SD

max.
success bits

B.-L.
successa

t. s.
successb bits

B.-L.
successa

t. s.
successb

194 0.499 0.016 0.540 454 0.698 0.676 538 0.698 0.687
258 0.522 0.013 0.555 475 0.710 0.676 548 0.711 0.687
323 0.536 0.011 0.573 505 0.702 0.675 580 0.703 0.686
485 0.555 0.008 0.582 636 0.708 0.678 648 0.705 0.687
646 0.565 0.007 0.588 708 0.701 0.677 742 0.701 0.685
970 0.576 0.005 0.586 949 0.707 0.674 938 0.705 0.683

1293 0.582 0.004 0.591 1147 0.705 0.671 1088 0.708 0.680
1617 0.585 0.003 0.593 1391 0.698 0.665 1342 0.706 0.676

av 0.704 0.674 0.705 0.684

a B.-L. success: Briem Lessel success measure.b t. s. success: training set success measure.
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were unsuccessful in locating a single globally optimum
keyset. Instead, we were able to produce families of well-
performing keysets with defined starting keysets and defined,
but variable, numbers of keybits in the initial, unoptimized
key. Performance for the optimized keysets averaged 0.704,
with the best keyset having a success measure of 0.711 and
a length of 548 keybits.

This suggests that construction of optimized keysets needs
to be driven by known constraints, such as our use of
surprisal S/N, instead of autonomously, as is the case in our
use of genetic algorithms. Future work is focusing on
identification of data set-size independent constraints which
can be used to direct the selection of descriptors used in
keyset construction. Once such constraints can be identified
we will also extend our work to include keysets constructed
with occurrence counts different from “one or more”.
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